Index theory for linear selfadjoint operator equations and nontrivial solutions for asymptotically linear operator equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Index theory for linear self-adjoint operator equations and nontrivial solutions for asymptotically linear operator equations

We will first establish an index theory for linear self-adjoint operator equations. And then with the help of this index theory we will discuss existence and multiplicity of solutions for asymptotically linear operator equations by making use of the dual variational methods and Morse theory. Finally, some interesting examples concerning second order Hamiltonian systems, first order Hamiltonian ...

متن کامل

‎A matrix LSQR algorithm for solving constrained linear operator equations

In this work‎, ‎an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$‎ ‎and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$‎ ‎where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$‎, ‎$mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$‎, ‎$ma...

متن کامل

Bifurcation Problem for Biharmonic Asymptotically Linear Elliptic Equations

In this paper, we investigate the existence of positive solutions for the ellipticequation $Delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $Omega$ of $R^{n}$, $ngeq2$, with Navier boundary conditions. We show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...

متن کامل

‎a matrix lsqr algorithm for solving constrained linear operator equations

in this work‎, ‎an iterative method based on a matrix form of lsqr algorithm is constructed for solving the linear operator equation $mathcal{a}(x)=b$‎ ‎and the minimum frobenius norm residual problem $||mathcal{a}(x)-b||_f$‎ ‎where $xin mathcal{s}:={xin textsf{r}^{ntimes n}~|~x=mathcal{g}(x)}$‎, ‎$mathcal{f}$ is the linear operator from $textsf{r}^{ntimes n}$ onto $textsf{r}^{rtimes s}$‎, ‎$ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2009

ISSN: 0944-2669,1432-0835

DOI: 10.1007/s00526-009-0279-5